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Hamilton–Jacobi Treatment of Constrained Systems
with Second-Order Lagrangians

Eqab M. Rabei,1 Eyad H. Hasan,2 and Humam B. Ghassib2

A new approach is examined in this paper for solving mechanical problems for both con-
strained and unconstrained systems with second-order Lagrangians, using the Hamilton–
Jacobi formulation. The relevant Hamilton–Jacobi function is constructed first. This is
then used to determine the solutions of the equations of motion for both systems.

KEY WORDS: constrained systems; Hamilton-Jacoby function; second-order
Lagrangians.

1. INTRODUCTION

The study of singular systems has reached a great status in physics starting
from the early development by Dirac (1950; 1964) of the generalized Hamiltonian
formulation. Since then this formalism has found a wide range of application
in field theory (Hanson, 1976; Sundermeyer, 1982; Gitman and Tyutin, 1990).
In particular, the treatment of constrained systems with higher-order Lagrangians
has been applied in many physical problems. Podolsky electrodynamics (Podolsky
and Schwed, 1948), string theory (Polyakov, 1986), relativistic particles in general
(Pisarski, 1986), and relativistic particles with curvature and torsion (Nesterenko,
1994) are only some examples.

Theories associated with higher-order regular Lagrangians were first devel-
oped by Ostrogradski (1850). These led to Euler’s and Hamilton’s equations of
motion. Pons generalized Ostrogradski’s theorem for singular Lagrangians to
higher-order Lagrangians by extending Dirac’s method (Pons, 1989). He also
demonstrated the equivalence of Euler–Lagrange and Hamilton–Dirac equations
for constrained systems derived from singular higher-order Lagrangians in the
derivatives.
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The existence of constrained structure in higher-order systems was noticed by
other authors (Battle et al., 1988). Discerning this in second-order systems, these
authors clarified the relation between the Hamiltonian and the Lagrangian con-
straints. They deduced the generalized Hamilton–Dirac equations in phase space.
An important result of their work is that the primary Hamiltonian constraints, i.e.,
those which follow directly from the definition of the Legender transformations,
come in two types: first-class constraints which have zero Poisson brackets with
all other constraints; and second-class constraints which do not have this property.
In addition, the operators relating Hamiltonian and the Lagrangian constraints
were derived. These authors also extended their work to higher-order singular
Lagrangians.

The Hamiltonian formalism for systems with singular Lagrangians of the
second–order was constructed by Nesterenko (1989). He proposed a new method
for obtaining the equations of motion in phase space for theories with singular
Lagrangians by differentiation of the canonical Hamiltonian. The relation between
the Hamiltonian and the Lagrangian was obtained. He assigned two kinds of con-
straints: primary and secondary. An important result of his work is the derivation
of the secondary constraints in the framework of the Lagrangian formalism by
differentiation of the Lagrangian constraints with respect to time.

The Hamilton–Jacobi formalism with the canonical approach for second-
order singular Lagrangians was developed by invoking Caratheodory’s
(Caratheodory, 1967) equivalence Lagrangian method (Pimentel and Teixeira,
1996). The structure of the constraints and the existence of the primary constraints
in second-order systems were discussed. In this approach, the equations of mo-
tion for the canonical variables of singular second-order systems were obtained
as total differential equations in many variables, and the set of Hamilton–Jacobi
partial differential equations (HJPDEs) for second-order singular systems was
written for these systems. The generalization of the Hamilton–Jacobi formalism
to higher-order singular Lagrangians was then examined (Pimentel and Teixeira,
1998).

Recently, another approach for solving mechanical problems of constrained
systems using the Hamilton–Jacobi formulation for first-order singular
Lagrangians was examined (Rabei et al., 2002, 2003). The Hamilton–Jacobi
function was obtained in the same manner as for regular systems. This was
then used to determine the solutions of the equations of motion for constrained
systems.

In this paper, the Hamilton–Jacobi formulation of constrained dynamical sys-
tems with second-order Lagrangians is studied. A general form for the solution of
HJPDEs of these systems is proposed. The Hamilton–Jacobi function in configu-
ration space is obtained by solving these equations. This leads to an extension of
the previous approach (Rabei et al., 2002, 2004) for solving mechanical problems
with second-order constrained and unconstrained Lagrangian systems.
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The paper is organized as follows. In Section 2, the Hamilton–Jacobi for-
mulation is reviewed briefly for both constrained and unconstrained systems. In
Section 3, a generalized method is proposed for determining the Hamilton–Jacobi
function for both systems; the equations of motion are then derived from this func-
tion. In Section 4, several illustrative examples are discussed. The work closes
with some concluding remarks in Section 5.

2. HAMILTON–JACOBI FORMULATION FOR
SECOND-ORDER LAGRANGIANS

The Lagrangian formulation of second-order theories requires the configura-
tion space formed by N generalized coordinates qi , q̇ i and q̈ i :

L(qi , q̇ i , q̈ i ), i = 1, . . . , N (2.1)

The corresponding Euler–Langrangian equations of motion are obtained from

S =
∫

L(qi , q̇ i , q̈ i ) dt (2.2)

using the Hamilton principle:

∂L

∂qi
− d

dt

(
∂L

∂q̇ i

)
+ d2

dt2

(
∂L

∂q̈ i

)
= 0 (2.3)

This is a system in N differential equations of fourth-order; so we need 4N initial
conditions to solve it.

The Hamiltonian formulation for second-order derivatives, first developed by
Ostrogradski (1850), treats the derivatives qi and q̇ i as coordinates. The transforma-
tion from the Lagrangian to the Hamiltonian approach is achieved by introducing
the generalized momenta pi , πi conjugate to the generalized coordinates qi , q̇ i ,
respectively:

pi = ∂L

∂q̇ i
− d

dt

(
∂L

∂q̈ i

)
(2.4)

πi = ∂L

∂q̈ i
(2.5)

then writing the accelerations q̈ i as functions of the coordinates q and velocities
q̇ i as well as of the momenta pi and πi [q̈ i = f (qi , q̇ i , pi , πi )]. The phase space
will then be spanned by the canonical variables (qi , pi ) and (q̇ i , πi ).

Introducing the canonical Hamiltonian

HC ≡ pi q̇i + πi q̈ i

∣∣
q̈ i = fi − L

∣∣
q̈ i = fi
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one can write the equations of motion of any function g of the canonical variables
as

ġ = {g, HC} (2.6)

However, this procedure is admissible only if the determinant of the Hessian matrix,

Hi j ≡
(

∂2L

∂q̈ i∂q̈ j

)
, i, j = 1, . . . , N

does not vanish; otherwise it will not be possible to express all the accelerations
q̈ i as functions of the canonical variables, and there will be relations such as

�α(qi , pi ; q̇ i , πi ) = 0, α = 1, . . . , m < 2(N − 1)

connecting the momenta variables. As a consequence, we will not be able to treat
the canonical variables as an independent set; instead, we have to use a formalism
specially developed to deal with the interdependent canonical variables, i.e., a
formalism for constrained systems (Dirac, 1950, 1964).

Prior to this we will give a brief review of Caratheodory’s (Caratheodory,
1967) equivalent Lagrangian method (Pimentel and Teixeira, 1996). Let us con-
sider a Lagrangian L(qi , q̇ i , q̈ i , t). One can obtain a completely equivalent La-
grangian by introducing

L ′ = L(qi , q̇ i , q̈ i , t) − d S(qi , q̇ i , t)

dt
(2.7)

such that the auxiliary function S(qi , q̇ i , t) must satisfy

∂S

∂t
= −H0 (2.8)

where H0 is defined as the usual Hamiltonian:

H0 = pi q̇i + πi q̈ i − L (2.9)

Pi = ∂S

∂qi
(2.10)

πi = ∂S

∂q̇ i
(2.11)

These are the fundamental equations of the equivalence Lagrangian method;
Eq. (2.8) is the relevant Hamilton–Jacobi partial differential equation.

If the rank of the Hessian matrix

∂2L

∂q̈ i∂q̈ j
(2.12)



Hamilton–Jacobi Treatment 1077

is N − R, R < N , then the generalized momenta conjugate to the generalized
coordinates q̇ i are defined as

πa = ∂L

∂q̈a
, a = R + 1, . . . , N (2.13)

πα = ∂L

∂q̈α

, α = 1, . . . , R (2.14)

Since the rank of the Hessian matrix is N − R, one can solve Eq. (2.13) to
obtain N − R accelerations q̈a in terms of qi , q̇ i , πa , and q̈α as follows:

q̈a = wa(qi , q̇ i , πa , q̈α) (2.15)

Substituting Eq. (2.15) into (2.14), one gets

πα = ∂L

∂q̈α

∣∣∣∣∣
q̈a=wa (qi , q̇ i ,πa , q̈α )

= −Hπ
α (qi , q̇ i , pa , πa) (2.16)

We can obtain a similar expression for the momenta pα:

pα = −H P
α (qi , q̇ i , pa , πa) (2.17)

where

pa = ∂L

∂q̇a
− d

dt

(
∂L

∂q̈a

)
(2.18a)

pα = ∂L

∂q̇α

− d

dt

(
∂L

∂q̈α

)
(2.18b)

Eqs. (2.16) and (2.17) become

H ′π
α (qi , q̇ i , pi , πi ) = πα + Hπ

α = 0, (2.19a)

α = 1, . . . , R

H ′p
α (qi , q̇ i , pi , πi ) = pα + H p

α = 0, (2.19b)

which are called primary constraints (Dirac, 1950, 1964). These relations indicate
that the generalized momenta pα and πα are not independent of pa and πa , which
is a natural result of the singular nature of the Lagrangian. The Hamiltonian H0 is
then defined as

H0 = paq̇a + q̇α pα|pβ=−H P
β

+ πawa + q̈απα|pβ=−Hπ
β

− L(qi , q̇ i , q̈α , q̈a=wa ), β = 1, . . . , R, a = R + 1, . . . , N . (2.20)

Defining the momentum P0 as

P0 = ∂S

∂t
(2.21)
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one can write the corresponding set of HJPDEs as (Pimentel and Teixeira, 1996)

H ′
0 = P0 + H0

(
t , qα , q̇α , qa , qa ; pa = ∂S

∂ q̇a
; πa = ∂S

∂ q̇a

)
= 0 (2.22a)

H ′p
α = pα + H p

α

(
t , qα , q̇α , qa , q̇a ; pa = ∂S

∂q̇a
; πa = ∂S

∂ q̇a

)
= 0 (2.22b)

H ′π
α = pα + Hπ

α

(
t , qα , q̇α , qa , q̇a ; pa = ∂S

∂q̇a
; πa = ∂S

∂ q̇a

)
= 0 (2.22c)

The equations of motion are written as total differential equations in many
variables as follows (Pimentel and Teixeira, 1996):

dqa = ∂H ′
0

∂pa
dt + ∂H ′P

α

∂pa
dqα + ∂H ′π

α

∂pa
dq̇α (2.23a)

dq̇a = ∂H ′
0

∂πa
dt + ∂H ′P

α

∂πa
dqα + ∂H ′π

α

∂πa
dq̇α (2.23b)

dpi = −∂H ′
0

∂qi
dt − ∂H ′P

α

∂qi
dqα − ∂H ′π

α

∂qi
dq̇α (2.23c)

dπi = −∂H ′
0

∂q̇ i
dt − ∂H ′P

α

∂q̇ i
dqα − ∂H ′π

α

∂q̇ i
dq̇α (2.23d)

We note from Eqs. (2.23) that the existence of constraints reduce the number of
the equations of motion.

Here q0 = t . Then set of Eqs. (2.23) is integrable (Pimentel and Teixeira,
1996; Muslih and Guler, 1998), if and only if

dH′
0 ≡ 0 (2.24a)

dH′P
α ≡ 0 (2.24b)

dH′π
α ≡ 0 (2.24c)

or if it leads to new secondary constraints (Dirac, 1950, 1964). In other words,
if conditions (2.24) are not satisfied identically, one may consider them as new
constraints and then test for the consistency conditions; repeating this procedure,
one may then be obtain a set of constraints.

Eqs. (2.23) can be solved to obtain the coordinates qa , q̇a and the momenta
pi , πi as functions of qα , q̇α , and t (Muslih, 2002). The canonical formulation
leads to the set of canonical phase space coordinates as follows:

qa ≡ qa(t , qα , q̇α);

q̇a ≡ q̇a(t , qα , q̇α);



Hamilton–Jacobi Treatment 1079

pi ≡ pa(t , qα , q̇α); a = R + 1, . . . , N

πi ≡ πa(t , qα , q̇α). α = 1, . . . , R (2.25)

3. DETERMINING THE HAMILTON–JACOBI FUNCTION
FOR SECOND-ORDER LAGRANGIANS

3.1. Unconstrained Systems

Under certain conditions it is possible to separate the variables in the
Hamilton–Jacobi equations, and the solution can then always be reduced to quadra-
tures (Goldstein, 1980; Arnold, 1989; Brack and Bhaduri, 1997). In practice, the
Hamilton–Jacobi technique becomes a useful computational tool only when such
a separation can be effected. In general, coordinates qi and q̇ i are said to be sep-
arable in the Hamilton–Jacobi equations when Hamilton’s principal function can
be split into three additive parts: one that depends only on the coordinates qi ; a
second that depends on the coordinates q̇ i ; and a third that is entirely indepen-
dent of the coordinates qi and q̇ i . In the cases to which we apply the method of
separation of variables, the Hamiltonian will be take to be time independent for
mathematical convenience. If we then restrict our work to such Hamiltonians, the
Hamilton–Jacobi equation for second-order unconstrained systems will be

∂S(qi , q̇ i , t)

∂t
+ H0

(
qi , q̇ i , pi = ∂S

∂qi
, πi = ∂S

∂q̇ i

)
= 0, i = 1, . . . , N (3.1)

We shall first try to find a solution that can be written in a separable form:

S(qi , q̇ i , t) = W (qi ) + W ′(q̇ i ) + f (t) (3.2)

Substituting this in Eq. (3.1), we get

d f

dt
= −H0

(
qi , q̇ i , pi = ∂W

∂qi
, πi , = ∂W ′

∂ q̇ i

)
(3.3)

The left-hand side depends only on t ; whereas the right-hand side depends
only on the coordinates qi and q̇ i . Therefore, each side must be equal to a constant
independent of q, q̇ i , and t . Let this constant be −E ′. We then have

f (t) = −E ′t = −
N∑

i=1

E ′
i t

where E ′ = ∑N
i=1 E ′

i . The Hamilton–Jacobi function becomes

S(qi , q̇ i , t) = W (qi , E) + W ′(q̇ i , E , E ′) − E ′t , (3.4)
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together with

H0

(
qi , q̇ i , pi = ∂W

∂qi
; πi = ∂W ′

∂ q̇ i

)
= E ′ (3.5)

This shows that for time-independent Hamiltonians we can always separate out
the time. We can proceed further by the method of separation of variables only if
Eq. (3.5) is similarly separable in qi and q̇ i ; that is, if a solution can be written in
the form

W =
∑

i

[Wi (qi , Ei ) + W ′
i (q̇ i , Ei , E ′

i )], i = 1, . . . , N (3.6)

Once we have found the Hamilton–Jacobi function S, the equations of motion
can be obtained by using the following canonical transformations (Goldstein, 1980;
Arnold, 1989):

ηi = ∂S

∂ E ′
i

(3.7a)

λi = ∂S

∂ Ei
(3.7b)

pi = ∂S

∂qi
(3.8a)

πi = ∂S

∂q̇ i
(3.8b)

where ηi and λi are constants and can be determined from the initial conditions.
One can solve Eqs. (3.7) and (3.8) to get

q̇ i = q̇ i (ηi , Ei , E ′
i , t) (3.9a)

qi = qi (λi , ηi , Ei , E ′
i , t) (3.9b)

pi = pi (λi , ηi , Ei , E ′
i , t) (3.9c)

πi = πi (ηi , Ei , E ′
i , t) (3.9d)

3.2. Constrained Systems with Second-Order Lagrangians

In this case, instead of considering the Hamilton–Jacobi equation (3.1), we
shall be dealing with a set of HJPDEs, Eqs. (2.22). If we have the same conditions
for separable coordinates and follow the same procedure just discussed, we can
extend this method to constrained systems. Moreover, because of the singular
nature of the dynamical Lagrangians, we should split (the qi and q̇i coordinates
of the system into those corresponding to independent momenta, qa and q̇a , and
others corresponding to dependent momenta, qα and q̇α). Thus, we can guess a
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general solution for Eqs. (2.22) in the form

S(qa , qa , q̇a , q̇α , t) = f (t) + Wa(qa , Ea) + W ′
a(q̇a , Ea , E ′

a)

+ fα(qα) + f ′
α(q̇α) + A (3.11)

where f (t) = −E ′t ; E ′ = ∑N−R
a=1 E ′

a .E
′
a are the (N − R) constants of integration

and A is some other constant; qα and q̇α are treated as independent variables, just
as the time t .

Here again the resulting equation for f (t) has the solution f (t) = − ∑N−R
a=1

E ′
at , and the remaining functions Wa(qa , Ea), W ′

a(q̇a , Ea , E ′
a), fα(qα), and f ′

α(q̇α)
are the time-independent Hamilton–Jacobi equations.

Once we have found the Hamilton–Jacobi function S, the equations of motion
can be obtained in the manner of regular systems, using the following canonical
transformation (Goldstein, 1980; Arnold, 1989):

ηa = ∂S

∂ E ′
a

(3.12a)

λa = ∂S

∂ Ea
(3.12b)

pi = ∂S

∂qi
(3.13a)

πi = ∂S

∂q̇ i
(3.13b)

where ηa and λa are constants and can be determined from the initial conditions.
The number of ηa is equal to the rank of the Hessian matrix, N − R; so is the
number of λa .

Eqs. (3.12) and (3.13) can be solved to give

q̇a = q̇a(ηa , Ea , E ′
a , q̇α , t) (3.14a)

qa = qa(λa , ηa , Ea , E ′
a , qα , t) (3.14b)

pi = pi (λa , ηa , Ea , E ′
a , qα , t) (3.15a)

πi = πi (ηa , Ea , E ′
a , q̇α , t) (3.15b)

From the initial conditions, one can then determine the constants ηa and λb.
Two remarks are in order here. The first is that, if the Hamiltonian H p

α does
not depend on pa and Hamiltonian Hπ

α does not depend on πa , the separation of
variables will be straightforward. The second is that, if H p

α depends on pa and
Hπ

a depends on πa , also if H0 depends on qα or q̇α or both, the separation of
variables will not be achieved directly. In this case a suitable change of variables
that combine (qa , qα) or (q̇a , q̇α) or both should be introduced. One can then
redefine the Lagrangian in terms of the new variables and restart the problem.
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To this end, further insight into the physical significance of S(qi , q̇ i , t) is
gained by an examination of its total time derivative

d S

dt
= ∂S

∂qa
q̇a + ∂S

∂qα

q̇α + ∂S

∂q̇a
q̈a + ∂S

∂ q̇α

q̈α + ∂S

∂t
(3.16)

= paq̇a + pαq̇α + πaq̈a + παq̈α − H0 = L (3.17)

Thus, Hamilton’s principal function differs from the time integral of the Lagrangian
only by a constant:

S =
∫

L dt + constant. (3.18)

In actual calculations, however, one cannot find S in teerms of time directly from
this integral unless qi , q̇ i , pi , and πi are known as function of time.

4. ILLUSTRATIVE EXAMPLES

In this section, we discuss four examples: one for a regular Lagrangian, and
three for different types of singular Lagrangians. The idea is to demonstrate how
we can find solutions of HJPDEs for both constrained and unconstrained systems
with second-order Lagrangians.

4.1. Second-Order Regular Lagrangian

We start with the following regular Lagrangian:

L = 1

2
(q̈2 − q̇2) (4.1)

This describes the one-dimensional motion of a black box in which a harmonic
oscillator is hidden (a system of units is chosen such that the angular frequency of
oscillations is 1) (Olga, 1997).

The corresponding generalized momenta (2.4) and (2.5) are

p = ∂L

∂q̇
− d

dt

∂L

∂q̈
= −q̇ − ...q (4.2)

π = ∂L

∂q̈
= q̈ (4.3)

The Hamiltonian H0 is calculated as

H0 = pq̇ + 1

2
π2 + 1

2
q̇2 (4.4)
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The corresponding set of HJPDEs, Eq. (3.1), reads

H ′
0 = P0 + H0 = ∂S

∂t
+ q̇

∂S

∂q
+ 1

2

(
∂S

∂q̇

)2

+ 1

2
q̇2 ≡ 0 (4.5)

Substituting Eq. (3.4) into (4.5), we have

∂ f

∂t
+ q̇

∂W

∂q
+ 1

2

(
∂W ′

∂q̇

)2

+ 1

2
q̇2 ≡ 0 (4.6)

Since H0 is time-independent, one can write f (t) = −E ′t . Eq. (4.6) can then be
written as

−E ′ + q̇
∂W

∂q
+ 1

2

(
∂W ′

∂q̇

)2

+ 1

2
q̇2 ≡ 0 (4.7)

We note from Eq. (4.7) that W depends only on q and W ′ depends only on q̇. This
means that

∂W

∂q
= E (4.8)

so that

W = q E

Substituting Eq. (4.8) into (4.7), we obtain

−E ′ + q̇ E + 1

2

(
∂W ′

∂q̇

)2

+ 1

2
q̇2 ≡ 0 (4.9)

This equation leads to

W ′(q̇ , E , E ′) =
∫ √

2E ′ + E2 − (q̇ + E)2 dq̇ (4.10)

With these results, the Hamilton–Jacobi function becomes

S = −E ′t + q E +
∫ √

2E ′ + E2 − (q̇ + E)2 dq̇ + A (4.11)

The solutions for the generalized coordinates can be obtained from the
transformations (3.7):

η = ∂S

∂ E ′ = −t +
∫

dq̇√
2E ′ + E2 − (q̇ + E)2

(4.12)

λ = ∂S

∂ E
= q +

∫
[E − (q̇ + E)]√

2E ′ + E2 − (q̇ + E)2
dq̇ (4.13)
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These two equations can be solved, respectively, to give

q̇ =
√

2E ′ + E2 sin(η + t) − E (4.14)

q = λ − E(η + t) −
√

2E ′ + E2 cos(η + t) (4.15)

The other half of the equations of motion can be determined by using
Eqs. (3.8), after substituting the result for q̇:

p = ∂S

∂q
= E (4.16)

π = ∂S

∂q̇
=

√
2E ′ + E2 − (q̇ + E)2 =

√
2E ′ + E2 cos(η + t) (4.17)

One gets the same results using the Hamiltonian formalism.

4.2. Two Primary First-Class Constraints

We consider the following singular Lagrangian:

L = 1

2

(
q̈2

1 + q̈2
2

) + q̇3q̈3 + q̇3q3 + q2q̇2 (4.18)

The corresponding generalized momenta, (2.18), (2.13), and (2.14), are

p1 = −...q1 (4.19a)

p2 = q2 − ...q2 (4.19b)

p3 = q3 = −H p
3 (4.19c)

π1 = q̈1 (4.19d)

π2 = q̈2 (4.19e)

π3 = q̇3 = −Hπ
3 (4.19f)

Here the primary constraints are represented by Eqs. (4.19c) and (4.19f) that can
be written as

H ′p
3 = p3 − q3 = 0 (4.20a)

H ′π
3 = π3 − q̇3 = 0 (4.20b)

The Hamiltonian H0 is calculated as

H0 = p1q̇1 + (p2 − q2)q̇2 + 1

2

(
π2

1 + π2
2

)
(4.21)
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The corresponding set of HJPDEs, Eqs. (2.22), reads

H ′
0 = P0 + H0 = ∂S

∂t
+ q̇1

∂S

∂q1
+ q̇2

(
∂S

∂q2
− q2

)

+ 1

2

(
∂S

∂q̇1

)2

+ 1

2

(
∂S

∂q̇2

)2

= 0 (4.22a)

H ′p
3 = p3 − q3 = ∂S

∂q3
− q3 = 0 (4.22b)

H ′π
3 = π − q̇3 = ∂S

∂q̇3
− q̇3 = 0 (4.22c)

However, the Poisson bracket of H ′p
3 and H ′

0 is equal to zero; so is the Poisson
bracket of H ′π

3 and H ′
0. This means that there are no secondary constraints and

the Poisson bracket of H ′p
3 and H ′π

3 is equal to zero. These, then, are first-class
constraints (Dirac, 1950, 1964).

With Eq. (3.11), the Hamilton–Jacobi function S can be written as

S(q1, q2, q3, q̇1, q̇2, q̇3, t) = f (t) + W1(q1, E1) + W2(q2, E2)

+ W ′
1(q̇1, E1, E ′

1) + W ′
2(q̇2, E2, E ′

2) + f3(q3) + f ′
3(q̇3) + A (4.23)

The coordinates q3 and q̇3 are treated as independent variables, just as the time t .
Since the Hamiltonian H0 is time independent, one can write

f (t) = −(E ′
1 + E ′

2)t

Substituting S into Eq. (4.22a), we have

−E ′
1 + q̇1

∂W1

∂q1
+ 1

2

(
∂W ′

1

∂q̇1

)2

− E ′
2 + q̇2

(
∂W2

∂q2
− q2

)
+ 1

2

(
∂W ′

2

∂q̇2

)2

= 0

(4.24)
We note that W1 depends only on q1 and W2 depends only on q2. We can then

write

∂W1

∂q1
= E1 (4.25a)

so that

W1 = E1q1

and

∂W2

∂q2
− q2 = E2 (4.25b)
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so that

W2 = E2q2 + 1

2
q2

2

Substituting Eqs. (4.25) into (4.24), we have

−E ′
1 + q̇1 E1 + 1

2

(
∂W ′

1

∂q̇1

)2

− E ′
2 + q̇2 E2 + 1

2

(
∂W ′

2

∂q̇2

)2

= 0 (4.26)

Separation of variables in this equation yields

1

2

(
∂W ′

1

∂q̇1

)2

+ q̇1 E1 − E ′
1 = 0

1

2

(
∂W ′

2

∂q̇2

)2

+ q̇2 E2 − E ′
2 = 0

The solution of these equations can be determined as

W ′
1(q̇1, E1, E ′

1) =
∫ √

2E ′
1 − 2q̇1 E1 dq̇1

W ′
2(q̇2, E2, E ′

2) =
∫ √

2E ′
2 − 2q̇2 E2 dq̇2

Using Eq. (4.22b), one finds f3(q3) = 1
2 q2

3 ; and using Eq. (4.22c), one finds
f ′
3(q̇3) = 1

2 q̇2
3.

With these results, the Hamilton–Jacobi function becomes

S = (−E ′
1 − E ′

2)t + q1 E1 + q2 E2 + 1

2
q2

2 +
∫ √

2E ′
1 − 2q̇1 E1 dq̇1

+
∫ √

2E ′
2 − 2q̇2 E2 dq̇2 + 1

2
q3

2 + 1

2
q̇2

3 + A (4.27)

The solutions for the generalized coordinates can be obtained from the trans-
formations (3.12):

η1 = ∂S

∂ E ′
1

= −t +
∫

dq̇1√
2E ′

1 − 2q̇1 E1
(4.28a)

η2 = ∂S

∂ E ′
2

= −t +
∫

dq̇2√
2E ′

2 − 2q̇2 E2
(4.28b)

λ1 = ∂S

∂ E1
= q1 −

∫
q̇1dq̇1√

2E ′
1 − 2q̇1 E1

(4.28c)
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λ2 = ∂S

∂ E2
= q2 −

∫
q̇2dq̇2√

2E ′
2 − 2q̇2 E2

(4.28d)

Solving these four equations, one gets

q̇1 = E ′
1

E1
− E1

2
(η1 + t)2 (4.29a)

q̇2 = E ′
2

E2
− E2

2
(η2 + t)2 (4.29b)

q1 = λ1 + E ′
1

E1
(η1 + t) − E1

6
(η1 + t)3 (4.29c)

q2 = λ2 + E ′
2

E2
(η2 + t) − E2

6
(η2 + t)3 (4.29d)

The other half of the equations of motion can be determined by using
Eqs. (3.13), after substituting the results for q̇1 and q̇2:

p1 = ∂S

∂q1
= E1 (4.30a)

p2 = ∂S

∂q2
= E2 + q2 = E2 + λ2 + E ′

2

E2
(η2 + t) − E2

6
(η2 + t)3 (4.30b)

p3 = ∂S

∂q3
= q3 (4.30c)

π1 = ∂S

∂q̇1
=

√
2E ′

1 − 2q̇1 E1 = −E1(η1 + t) (4.30d)

π2 = ∂S

∂q̇2
=

√
2E ′

2 − 2q̇2 E2 = −E2(η2 + t) (4.30e)

π3 = ∂S

∂q̇3
= q̇3 (4.30f)

where q3 and q̇3 are arbitrary parameters. One can show that these results are in
exact agreement with those obtained using the canonical approach, Eqs. (2.23), as
well as the Dirac approach.

4.3. Second-Class Constraints

We now consider the following singular Lagrangian:

L = 1

2

(
q̈2

1 + q̈2
2

) + q̇3q̈3 − 1

2
q̇2

3 (4.31)
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The corresponding generalized momenta read

p1 = −...q1 (4.32a)

p2 = −...q2 (4.32b)

p3 = −q̇3 = −H ′p
3 (4.32c)

π1 = q̈1 (4.32d)

π2 = q̈2 (4.32e)

π3 = q̇3 = −H ′π
3 (4.32f)

The primary constraints are represented by Eqs. (4.32c) and (4.32f) that can be
written as

H ′p
3 = p3 + q̇3 = 0 (4.33a)

H ′π
3 = π3 − q̇3 = 0 (4.33b)

The Hamiltonian H0 is calculated as

H0 = p1q̇1 + p2q̇2 + 1

2

(
π2

1 + π2
2

) − 1

2
q̇2

3 (4.34)

The corresponding set of HJPDEs, (2.22), reads

H ′
0 = P0 + H0 = ∂S

∂t
+ q̇1

∂S

∂q1
+ q̇2

∂S

∂q2

+ 1

2

(
∂S

∂q̇1

)2

+ 1

2

(
∂S

∂q̇2

)2

− 1

2
q̇2

3 = 0 (4.35a)

H ′p
3 = p3 + H p

3 = ∂S

∂q3
+ q̇3 = 0 (4.35b)

H ′π
3 = π3 + Hπ

3 = ∂S

∂q̇3
− q̇3 = 0 (4.35c)

However, the Poisson bracket of H ′p
3 and H ′

0 is equal to zero, and the Poisson
bracket of H ′π

3 and H ′
0 is not identically zero; it gives a new (secondary) constraint

(Dirac, 1950, 1964):
H ′′π

3 = q̇3 = 0 (4.36)

There are no further constraints. Following the Dirac classification (Dirac, 1950,
1964), the constraints are of second-class.

Taking Eq. (4.36) into account, one can rewrite the primary constraint and
the Hamiltonian, Eqs. (4.33) and (4.34), as

H ′p
3 = p3 = 0

H ′π
3 = π3 = 0
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H0 = p1q̇1 + p2q̇2 + 1

2

(
π2

1 + π2
2

)
Then the corresponding set of HJPDEs reads

H ′
0 = P0 + H0 = ∂S

∂t
+ q̇1

∂S

∂q1
+ q̇2

∂S

∂q2
+ 1

2

(
∂S

∂q̇1

)2

+ 1

2

(
∂S

∂q̇2

)2

= 0 (4.37a)

H ′p
3 = p3 + H p

3 = ∂S

∂q3
= 0 (4.37b)

H ′π
3 = π3 + H ′π

3 = ∂S

∂q̇3
= 0 (4.37c)

The Hamilton–Jacobi function S can be determined by

S(q1, q2, q3, q̇1, q̇2, q̇3, t) = f (t) + W1(q1, E1) + W2(q2, E2) + W ′
1(q̇1, E1, E ′

1)

+ W ′
2(q̇2, E2, E ′

2) + f3(q3) + f ′
3(q̇3) + A (4.38)

The coordinates q3 and q̇3 are treated as independent variables, just as the time t .
Since the Hamiltonian H0 is time independent, one can write

f (t) = −(E ′
1 + E ′

2)t

Substituting Eqs. (4.38) into (4.37a), one can obtain

−E ′
1 + q̇1

∂W1

∂q1
+ 1

2

(
∂W ′

1

∂q̇1

)2

− E ′
2 + q̇2

∂W2

∂q2
+ 1

2

(
∂W ′

2

∂q̇2

)2

= 0 (4.39)

From Eq. (4.39) we note that W1 depends only on q1 and W2 depends only on q2.
We can then write

∂W1

∂q1
= E1 (4.40a)

so that

W1 = E1q1

and

∂W2

∂q2
= E2 (4.40b)

so that

W2 = E2q2

Substituting Eqs. (4.40) into (4.39), we have

−E ′
1 + q̇1 E1 + 1

2

(
∂W ′

1

∂q̇1

)2

− E ′
3 + q̇3 E3 + 1

2

(
∂W ′

3

∂q̇3

)2

= 0 (4.41)
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Separation of variables in this equation leads to

1

2

(
∂W ′

1

∂q̇1

)2

+ q̇1 E1 − E ′
1 = 0

1

2

(
∂W ′

2

∂q̇2

)2

+ q̇2 E2 − E ′
2 = 0

The solution of these two equations can be determined as

W ′
1(q̇1, E1, E ′

1) =
∫ √

2E ′
1 − 2q̇1 E1 dq̇1

W ′
2(q̇2, E , E ′

2) =
∫ √

2E ′
2 − 2 E2q̇2 dq̇2

Using Eq. (4.37b), one finds f3(q3) =constant; and using Eq. (4.37c), one finds
f ′
3(q̇3) = constant.

With these result, the Hamilton–Jacobi function becomes

S = (−E ′
1 − E ′

2)t + q1 E1 + q2 E2 +
∫ √

2E ′
1 − 2q̇1 E1 dq̇1

+
∫ √

2E ′
2 − 2q̇2 E2 dq̇2 + A. (4.42)

The solution for the generalized coordinates can be obtained from the
transformations (3.12):

η1 = ∂S

∂ E ′
1

= −t +
∫

dq̇1√
2E ′

1 − 2q̇1 E1
(4.43a)

η2 = ∂S

∂ E ′
2

= −t +
∫

dq̇2√
2E ′

2 − 2q̇2 E2
(4.43b)

λ1 = ∂S

∂ E1
= q1 −

∫
q̇1dq̇1√

2E ′
1 − 2q̇1 E1

(4.43c)

λ2 = ∂S

∂ E2
= q2 −

∫
q̇2dq̇2

2E ′
2 − 2q̇2 E2

(4.43d)

These equations can be solved, respectively, to give

q̇1 = E ′
1

E1
− E1

2
(η1 + t)2 (4.44a)

q̇2 = E ′
2

E2
− E2

2
(η2 + t)2 (4.44b)
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q1 = λ1 + E ′
1

E1
(η1 + t) − E1

6
(η1 + t)3 (4.44c)

q2 = λ2 + E ′
2

E2
(η2 + t) − E2

6
(η2 + t)3 (4.44d)

The other half of the equation of motion can be determined by using
Eqs. (3.13), after substituting the results for q̇1 and q̇3 :

p1 = ∂S

∂q1
= E1 (4.45a)

p2 = ∂S

∂q2
= E2 (4.45b)

p3 = ∂S

∂q3
= 0 (4.45c)

π1 = ∂S

∂ q̇1
=

√
2E ′

1 − 2q̇1 E1 = −E1(η1 + t) (4.45d)

π2 = ∂S

∂q̇2
=

√
2E ′

2 − 2q̇2 E2 = −E2(η2 + t) (4.45e)

π3 = ∂S

∂q̇3
= 0 (4.45f)

These results are in exact agreement with those obtained using the canonical
approach, Eqs. (2.23), as well as the Dirac approach.

4.4. First and Second-Class Constraints

The final example has been constructed so as to contain first as well as second-
class constraints:

L = 1

2
(q̈2

1 + q̈2
2) − 1

2

(
q̇2

1 + q̇2
2

) + 1

2
q2

3 + q̇3q̈3 (4.46)

The corresponding generalized momenta read

p1 = −q̇1 − ...q1 (4.47a)

p2 = −q̇2 − ¨q̈2 (4.47b)

p3 = 0 = −H p
3 (4.47c)

π1 = q̈1 (4.47d)

π2 = q̈2 (4.47e)

π3 = q̇3 = −Hπ
3 (4.47f)



1092 Rabei et al.

Eqs. (4.47c) and (4.47f) represent primary constraints that can be written as

H ′p
3 = p3 = 0 (4.48a)

H ′π
3 = π3 − q̇3 = 0 (4.48b)

The Hamiltonian H0 is calculated as

H0 = p1q̇1 + p2q̇2 + 1

2

(
π2

1 + π2
2

) + 1

2

(
q̇2

1 + q̇2
2

) − 1

2
q2

3 (4.49)

The corresponding set of HJPDEs, (2.22), reads

H ′
0 = P0 + H0 = ∂S

∂t
+ q̇1

∂S

∂q1
+ q̇2

∂S

∂q2
+ 1

2

(
∂S

∂ q̇1

)2

+ 1

2

(
∂S

∂q̇2

)2

+ 1

2
q̇2

1 + 1

2
q̇2

2 − 1

2
q2

3 = 0 (4.50d)

H ′p
3 = p3 = ∂S

∂q3
= 0 (4.50e)

H ′π
3 = π − q̇3 = ∂S

∂q̇3
− q̇3 = 0 (4.50f)

However, the Poisson bracket of H ′p
3 and H ′

0 is not identically zero; it gives
a new (secondary) constraint (Dirac, 1950, 1964):

H ′′p
3 = q3 = 0 (4.51)

There are no further constraints. Following the Dirac classification (Dirac, 1950,
1964), the constraints are first and second class.

Taking Eq. (4.51) into account, one can rewrite the Hamiltonian and the
primary constraints, Eqs. (4.49) and (4.48), as

H0 = p1q̇1 + p2q̇2 + 1

2

(
π2

1 + π2
2

) + 1

2

(
q̇2

1 + q̇2
2

)
(4.52a)

H ′p
3 = p3 = 0 (4.52b)

H ′π
3 = π − q̇3 = 0 (4.52c)

Then the corresponding set of HJPDEs, (2.25), reads

H ′
0 = P0 + H0 = ∂S

∂t
+ q̇1

∂S

∂q1
+ q̇2

∂S

∂q2
+ 1

2

(
∂S

∂ q̇1

)2

+ 1

2

(
∂S

∂q̇2

)2

+ 1

2
q̇2

1 + 1

2
q̇2

2 = 0 (4.53a)

H ′p
3 = p3 = ∂S

∂q3
= 0 (4.53b)
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H ′π
3 = π − q̇3 = ∂S

∂ q̇3
− q̇3 = 0 (4.53c)

The Hamilton–Jacobi function S can be determined by

S(q1, q2, q3, q̇1, q̇2, q̇3, t) = f (t) + W1(q1, E1) + W2(q2, E2) + W ′
1(q̇1, E1, E ′

1)

+ W ′
2(q̇2, E2, E ′

2) + f3(q3) + f ′
3(q̇3) + A (4.54)

The coordinates q3 and q̇3 are treated as independent variables, just as the time t .
Since the Hamiltonian H0 is time independent, one can write

f (t) = −(E ′
1 + E ′

2)t

Eq. (4.53a) can now be written as

− E ′
1 + q̇1

∂W1

∂q1
+ 1

2

(
∂W ′

1

∂q̇1

)2

+ 1

2
q̇2

1 − E ′
2 + q̇2

∂W2

∂q2

+ 1

2

(
∂W ′

2

∂q̇2

)2

+ 1

2
q̇2

2 = 0 (4.55)

From Eq. (4.55) we note that W1 depends only on q1 and W2 depends only on q2.
we can then write

∂W1

∂q1
= E1 (4.56a)

so that

W1 = E1q1

and
∂W2

∂q2
= E2 (4.56b)

so that

W2 = E2q2

Substituting Eqs. (4.56), into (4.55), we have

− E ′
1 + q̇1 E1 + 1

2

(
∂W ′

1

∂q̇1

)2

+ 1

2
q̇2

1 − E ′
2 + q̇2 E2

+ 1

2

(
∂W ′

2

∂q̇2

)2

+ 1

2
q̇2

2 = 0 (4.57)

Separation of variables in this equation yields

1

2

(
∂W ′

1

∂q̇1

)2

+ 1

2
q̇2

1 + q̇1 E1 − E ′
1 = 0
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1

2

(
∂W ′

2

∂q̇2

)2

+ 1

2
q̇2

2 + q̇2 E2 − E ′
2 = 0

The solution of these two equations can be determined as

W ′
1(q̇1, E1, E ′

1) =
∫ √

2E ′
1 + (E1)2 − (q̇1 + E1)2 dq̇1

W ′
2(q̇2, E2, E ′

2) =
∫ √

2E ′
2 + (E2)2 − (q̇2 + E2)2 dq̇2

Using Eq. (4.53b), one finds f3(q3) = constant; and using Eq. (4.53c), one finds
f ′
3(q̇3) = 1

2 q̇2
3.

With these results, the Hamilton–Jacobi function S becomes

S(q1, q2, q3, q̇1, q̇2, q̇3) = (−E ′
1 − E ′

2)t + q1 E1 + q2 E2

+
∫ √

2E ′
1 + (E1)2 − (q̇1 + E1)2 dq̇1

+
∫ √

2E ′
2 + (E2)2 − (q̇2 + E2)2 dq̇2

+ 1

2
q̇2

3 + A (4.58)

The solution for the generalized coordinates can be obtained from the
transformations (3.12):

η1 = ∂S

∂ E ′
1

= −t +
∫

dq̇1√
2E ′

1 + (E1)2 − (q̇1 + E1)2
(4.59a)

η2 = ∂S

∂ E ′
2

= −t +
∫

dq̇2√
2E ′

2 + (E2)2 − (q̇2 + E2)2
(4.59b)

λ1 = ∂S

∂ E1
= q1 +

∫
[E1 − (q̇1 + E1)] dq̇1√

2E ′
1 + (E1)2 − (q̇1 + E1)2

(4.59c)

λ2 = ∂S

∂ E2
= q2 +

∫
[E2 − (q̇2 + E2)] dq̇2√

2E ′
2 + (E2)2 − (q̇2 + E2)2

(4.59d)

These four equations can be solved, respectively, to give

q̇1 =
√

2E ′
1 + (E1)2 sin(η1 + t) − E1 (4.60a)

q̇2 =
√

2E ′
2 + (E2)2 sin(η2 + t) − E2 (4.60b)

q1 = λ1 − E1(η1 + t) −
√

2E ′
1 + (E1)2 cos(η1 + t) (4.60c)
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q2 = λ2 − E2(η2 + t) −
√

2E ′
2 + (E2)2 cos(η2 + t) (4.60d)

The other half of the equations of motion can be determined by using Eqs. (3.13),
after substituting the results for q̇1 and q̇3:

p1 = ∂S

∂q1
= E1 (4.61a)

p2 = ∂S

∂q2
= E2 (4.61b)

p3 = ∂S

∂q3
= 0 (4.61c)

π1 = ∂S

∂q̇1
=

√
2E ′

1 + (E1)2 − (q̇1 + E1)2

=
√

2E ′
1 + (E1)2 cos(η1 + t) (4.61d)

π2 = ∂S

∂q̇2
=

√
2E ′

2 + (E2)2 − (q̇2 + E2)2

=
√

2E ′
2 + (E2)2 cos(η2 + t) (4.61e)

π3 = ∂S

∂q̇3
= q̇3 (4.61f)

These results are in exact agreement with those that can be obtained using the
canonical approach, Eqs. (2.23), as well as the Dirac approach.

5. CONCLUSION

In this work, a general method for determining the Hamilton–Jacobi function
of unconstrained and constrained systems with second-order Lagrangians has been
proposed and extended to different kinds of constraints.

We have shown that the Hamilton–Jacobi function S in configuration space
can be determined with the proviso that the set of HJPDEs is integrable. The
equations of motion can then be readily found using S. These solutions are obtained
in terms of the time and the spatial coordinates that correspond to dependent
momenta; these are treated as independent variables, just as the time t .

To test our proposed method and to get a somewhat deeper understanding,
we have examined one example of discrete regular systems and three examples
of different kinds of discrete singular systems. In the first example the results
are found to be in exact agreement with the Hamiltonian formalism of regular
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second-order Lagrangians; while in the examples of singular systems the results
are in exact agreement with the canonical approach as well as the Dirac approach.
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